3.1.16 \(\int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx\) [16]

3.1.16.1 Optimal result
3.1.16.2 Mathematica [A] (verified)
3.1.16.3 Rubi [A] (verified)
3.1.16.4 Maple [A] (verified)
3.1.16.5 Fricas [A] (verification not implemented)
3.1.16.6 Sympy [F]
3.1.16.7 Maxima [A] (verification not implemented)
3.1.16.8 Giac [A] (verification not implemented)
3.1.16.9 Mupad [B] (verification not implemented)

3.1.16.1 Optimal result

Integrand size = 31, antiderivative size = 88 \[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=a^2 B x+\frac {a^2 (3 A+4 B) \text {arctanh}(\sin (c+d x))}{2 d}+\frac {a^2 (3 A+2 B) \tan (c+d x)}{2 d}+\frac {A \left (a^2+a^2 \cos (c+d x)\right ) \sec (c+d x) \tan (c+d x)}{2 d} \]

output
a^2*B*x+1/2*a^2*(3*A+4*B)*arctanh(sin(d*x+c))/d+1/2*a^2*(3*A+2*B)*tan(d*x+ 
c)/d+1/2*A*(a^2+a^2*cos(d*x+c))*sec(d*x+c)*tan(d*x+c)/d
 
3.1.16.2 Mathematica [A] (verified)

Time = 0.54 (sec) , antiderivative size = 53, normalized size of antiderivative = 0.60 \[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\frac {a^2 (2 B d x+(3 A+4 B) \text {arctanh}(\sin (c+d x))+(4 A+2 B+A \sec (c+d x)) \tan (c+d x))}{2 d} \]

input
Integrate[(a + a*Cos[c + d*x])^2*(A + B*Cos[c + d*x])*Sec[c + d*x]^3,x]
 
output
(a^2*(2*B*d*x + (3*A + 4*B)*ArcTanh[Sin[c + d*x]] + (4*A + 2*B + A*Sec[c + 
 d*x])*Tan[c + d*x]))/(2*d)
 
3.1.16.3 Rubi [A] (verified)

Time = 0.74 (sec) , antiderivative size = 88, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.323, Rules used = {3042, 3454, 3042, 3447, 3042, 3500, 3042, 3214, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^3(c+d x) (a \cos (c+d x)+a)^2 (A+B \cos (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^2 \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^3}dx\)

\(\Big \downarrow \) 3454

\(\displaystyle \frac {1}{2} \int (\cos (c+d x) a+a) (a (3 A+2 B)+2 a B \cos (c+d x)) \sec ^2(c+d x)dx+\frac {A \tan (c+d x) \sec (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right ) \left (a (3 A+2 B)+2 a B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^2}dx+\frac {A \tan (c+d x) \sec (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{2 d}\)

\(\Big \downarrow \) 3447

\(\displaystyle \frac {1}{2} \int \left (2 B \cos ^2(c+d x) a^2+(3 A+2 B) a^2+\left (2 B a^2+(3 A+2 B) a^2\right ) \cos (c+d x)\right ) \sec ^2(c+d x)dx+\frac {A \tan (c+d x) \sec (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \int \frac {2 B \sin \left (c+d x+\frac {\pi }{2}\right )^2 a^2+(3 A+2 B) a^2+\left (2 B a^2+(3 A+2 B) a^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^2}dx+\frac {A \tan (c+d x) \sec (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{2 d}\)

\(\Big \downarrow \) 3500

\(\displaystyle \frac {1}{2} \left (\int \left ((3 A+4 B) a^2+2 B \cos (c+d x) a^2\right ) \sec (c+d x)dx+\frac {a^2 (3 A+2 B) \tan (c+d x)}{d}\right )+\frac {A \tan (c+d x) \sec (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\int \frac {(3 A+4 B) a^2+2 B \sin \left (c+d x+\frac {\pi }{2}\right ) a^2}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {a^2 (3 A+2 B) \tan (c+d x)}{d}\right )+\frac {A \tan (c+d x) \sec (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{2 d}\)

\(\Big \downarrow \) 3214

\(\displaystyle \frac {1}{2} \left (a^2 (3 A+4 B) \int \sec (c+d x)dx+\frac {a^2 (3 A+2 B) \tan (c+d x)}{d}+2 a^2 B x\right )+\frac {A \tan (c+d x) \sec (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (a^2 (3 A+4 B) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+\frac {a^2 (3 A+2 B) \tan (c+d x)}{d}+2 a^2 B x\right )+\frac {A \tan (c+d x) \sec (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{2 d}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {1}{2} \left (\frac {a^2 (3 A+4 B) \text {arctanh}(\sin (c+d x))}{d}+\frac {a^2 (3 A+2 B) \tan (c+d x)}{d}+2 a^2 B x\right )+\frac {A \tan (c+d x) \sec (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{2 d}\)

input
Int[(a + a*Cos[c + d*x])^2*(A + B*Cos[c + d*x])*Sec[c + d*x]^3,x]
 
output
(A*(a^2 + a^2*Cos[c + d*x])*Sec[c + d*x]*Tan[c + d*x])/(2*d) + (2*a^2*B*x 
+ (a^2*(3*A + 4*B)*ArcTanh[Sin[c + d*x]])/d + (a^2*(3*A + 2*B)*Tan[c + d*x 
])/d)/2
 

3.1.16.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3214
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_. 
)*(x_)]), x_Symbol] :> Simp[b*(x/d), x] - Simp[(b*c - a*d)/d   Int[1/(c + d 
*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]
 

rule 3447
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a 
 + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x]^2), 
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
 

rule 3454
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[ 
e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Simp[b/(d*(n + 1)*(b*c + 
 a*d))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp 
[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n + 1) - B 
*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
&& GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0 
])
 

rule 3500
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 
 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)* 
(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A 
*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
3.1.16.4 Maple [A] (verified)

Time = 3.29 (sec) , antiderivative size = 106, normalized size of antiderivative = 1.20

method result size
parts \(\frac {A \,a^{2} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}+\frac {\left (A \,a^{2}+2 B \,a^{2}\right ) \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}+\frac {\left (2 A \,a^{2}+B \,a^{2}\right ) \tan \left (d x +c \right )}{d}+\frac {B \,a^{2} \left (d x +c \right )}{d}\) \(106\)
derivativedivides \(\frac {A \,a^{2} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+B \,a^{2} \left (d x +c \right )+2 A \,a^{2} \tan \left (d x +c \right )+2 B \,a^{2} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+A \,a^{2} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+B \,a^{2} \tan \left (d x +c \right )}{d}\) \(114\)
default \(\frac {A \,a^{2} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+B \,a^{2} \left (d x +c \right )+2 A \,a^{2} \tan \left (d x +c \right )+2 B \,a^{2} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+A \,a^{2} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+B \,a^{2} \tan \left (d x +c \right )}{d}\) \(114\)
parallelrisch \(-\frac {3 \left (\left (A +\frac {4 B}{3}\right ) \left (1+\cos \left (2 d x +2 c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )-\left (A +\frac {4 B}{3}\right ) \left (1+\cos \left (2 d x +2 c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )-\frac {2 d x B \cos \left (2 d x +2 c \right )}{3}+\frac {2 \left (-B -2 A \right ) \sin \left (2 d x +2 c \right )}{3}-\frac {2 d x B}{3}-\frac {2 A \sin \left (d x +c \right )}{3}\right ) a^{2}}{2 d \left (1+\cos \left (2 d x +2 c \right )\right )}\) \(128\)
risch \(a^{2} B x -\frac {i a^{2} \left (A \,{\mathrm e}^{3 i \left (d x +c \right )}-4 A \,{\mathrm e}^{2 i \left (d x +c \right )}-2 B \,{\mathrm e}^{2 i \left (d x +c \right )}-A \,{\mathrm e}^{i \left (d x +c \right )}-4 A -2 B \right )}{d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{2}}-\frac {3 A \,a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{2 d}-\frac {2 a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) B}{d}+\frac {3 A \,a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{2 d}+\frac {2 a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) B}{d}\) \(172\)
norman \(\frac {a^{2} B x +a^{2} B x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a^{2} B x \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a^{2} B x \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {a^{2} \left (5 A +2 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}+\frac {6 A \,a^{2} \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-2 a^{2} B x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 a^{2} B x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\frac {4 a^{2} \left (A +B \right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {4 a^{2} \left (3 A +B \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {a^{2} \left (3 A +2 B \right ) \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {a^{2} \left (3 A +4 B \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 d}+\frac {a^{2} \left (3 A +4 B \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 d}\) \(296\)

input
int((a+cos(d*x+c)*a)^2*(A+B*cos(d*x+c))*sec(d*x+c)^3,x,method=_RETURNVERBO 
SE)
 
output
A*a^2/d*(1/2*sec(d*x+c)*tan(d*x+c)+1/2*ln(sec(d*x+c)+tan(d*x+c)))+(A*a^2+2 
*B*a^2)/d*ln(sec(d*x+c)+tan(d*x+c))+(2*A*a^2+B*a^2)/d*tan(d*x+c)+B*a^2/d*( 
d*x+c)
 
3.1.16.5 Fricas [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.35 \[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\frac {4 \, B a^{2} d x \cos \left (d x + c\right )^{2} + {\left (3 \, A + 4 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) - {\left (3 \, A + 4 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (2 \, {\left (2 \, A + B\right )} a^{2} \cos \left (d x + c\right ) + A a^{2}\right )} \sin \left (d x + c\right )}{4 \, d \cos \left (d x + c\right )^{2}} \]

input
integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^3,x, algorithm="f 
ricas")
 
output
1/4*(4*B*a^2*d*x*cos(d*x + c)^2 + (3*A + 4*B)*a^2*cos(d*x + c)^2*log(sin(d 
*x + c) + 1) - (3*A + 4*B)*a^2*cos(d*x + c)^2*log(-sin(d*x + c) + 1) + 2*( 
2*(2*A + B)*a^2*cos(d*x + c) + A*a^2)*sin(d*x + c))/(d*cos(d*x + c)^2)
 
3.1.16.6 Sympy [F]

\[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=a^{2} \left (\int A \sec ^{3}{\left (c + d x \right )}\, dx + \int 2 A \cos {\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int A \cos ^{2}{\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int B \cos {\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int 2 B \cos ^{2}{\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int B \cos ^{3}{\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx\right ) \]

input
integrate((a+a*cos(d*x+c))**2*(A+B*cos(d*x+c))*sec(d*x+c)**3,x)
 
output
a**2*(Integral(A*sec(c + d*x)**3, x) + Integral(2*A*cos(c + d*x)*sec(c + d 
*x)**3, x) + Integral(A*cos(c + d*x)**2*sec(c + d*x)**3, x) + Integral(B*c 
os(c + d*x)*sec(c + d*x)**3, x) + Integral(2*B*cos(c + d*x)**2*sec(c + d*x 
)**3, x) + Integral(B*cos(c + d*x)**3*sec(c + d*x)**3, x))
 
3.1.16.7 Maxima [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.61 \[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\frac {4 \, {\left (d x + c\right )} B a^{2} - A a^{2} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 2 \, A a^{2} {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 4 \, B a^{2} {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 8 \, A a^{2} \tan \left (d x + c\right ) + 4 \, B a^{2} \tan \left (d x + c\right )}{4 \, d} \]

input
integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^3,x, algorithm="m 
axima")
 
output
1/4*(4*(d*x + c)*B*a^2 - A*a^2*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log( 
sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) + 2*A*a^2*(log(sin(d*x + c) + 1 
) - log(sin(d*x + c) - 1)) + 4*B*a^2*(log(sin(d*x + c) + 1) - log(sin(d*x 
+ c) - 1)) + 8*A*a^2*tan(d*x + c) + 4*B*a^2*tan(d*x + c))/d
 
3.1.16.8 Giac [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 154, normalized size of antiderivative = 1.75 \[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\frac {2 \, {\left (d x + c\right )} B a^{2} + {\left (3 \, A a^{2} + 4 \, B a^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - {\left (3 \, A a^{2} + 4 \, B a^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (3 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 2 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 5 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{2}}}{2 \, d} \]

input
integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^3,x, algorithm="g 
iac")
 
output
1/2*(2*(d*x + c)*B*a^2 + (3*A*a^2 + 4*B*a^2)*log(abs(tan(1/2*d*x + 1/2*c) 
+ 1)) - (3*A*a^2 + 4*B*a^2)*log(abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*(3*A*a^ 
2*tan(1/2*d*x + 1/2*c)^3 + 2*B*a^2*tan(1/2*d*x + 1/2*c)^3 - 5*A*a^2*tan(1/ 
2*d*x + 1/2*c) - 2*B*a^2*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1 
)^2)/d
 
3.1.16.9 Mupad [B] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.84 \[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\frac {3\,A\,a^2\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {2\,B\,a^2\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {4\,B\,a^2\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {2\,A\,a^2\,\sin \left (c+d\,x\right )}{d\,\cos \left (c+d\,x\right )}+\frac {A\,a^2\,\sin \left (c+d\,x\right )}{2\,d\,{\cos \left (c+d\,x\right )}^2}+\frac {B\,a^2\,\sin \left (c+d\,x\right )}{d\,\cos \left (c+d\,x\right )} \]

input
int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^2)/cos(c + d*x)^3,x)
 
output
(3*A*a^2*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/d + (2*B*a^2*atan(s 
in(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/d + (4*B*a^2*atanh(sin(c/2 + (d*x)/ 
2)/cos(c/2 + (d*x)/2)))/d + (2*A*a^2*sin(c + d*x))/(d*cos(c + d*x)) + (A*a 
^2*sin(c + d*x))/(2*d*cos(c + d*x)^2) + (B*a^2*sin(c + d*x))/(d*cos(c + d* 
x))